
Usability and Suitability Survey of Features
in Visual IDEs for Non-Programmers

Jean Michel Rouly

George Mason University

Jonathan D. Orbeck

University of Alabama

Eugene Syriani

University of Montreal

Abstract
Software tools and working environments differ drastically
from one domain to another. The software engineering do-
main is entertained by a diversity of rich integrated develop-
ment environments (IDEs) that aim at simplifying the tasks
and reducing the efforts of a programmer. Other domains
are unfortunately not as cherished. In this paper, we survey
twenty-five visual IDEs used in non-programming domains
and evaluate how usable and fit they are for their domain.
The goal of this research is to determine what features are
needed in different domains and how they should be pre-
sented to the domain user.

Keywords Integrated Development Environments; Visual
Languages; Domain-Specific Languages; Usability Study

1. Introduction
Software being a ubiquitous technology, it is nowadays be-
ing used in a wide spectrum of domains: music, teaching,
arts, engineering. The proliferation of visual IntegratedDe-
velopment Environments (IDEs) has helped better assist
these domain users who are unfamiliar with programming.
Common requirements to IDEs in general often include [8]:
uniformity and consistency across the different tools it pro-
vides, an interactive user interface for performing the dif-
ferent tasks, ability to inspect a well-defined state of the
system being developed (e.g.,debugging), integrate control
of versions of the system in an individual or collaborative
environment, and ensure a manageable development pro-
cess.

Previous studies have surveyed IDEs, but they were
mostly focused on the programming domain [5, 8, 10]. In

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PLATEAU ’14, October 21, 2014, Portland, OR, USA..
Copyright c© 2014 ACM 978-1-4503-2277-5/14/10. . . $15.00.
http://dx.doi.org/10.1145/2688204.2688207

this study, we focus on IDEs used in non-programming do-
mains where the underlying language is visual (e.g., dia-
grams), as opposed to textual (e.g.,source code). Often these
IDEs provide the user with information about the syntax of
the supported language(s) or otherwise provide features that
integrate with any constraints of the visual language. Com-
ponents and behaviors of the IDE interface can greatly affect
the overall usability of an IDE as well as its suitability to its
supported language. Consequently, it is important to utilize
as many techniques as possible to ensure both overall inter-
face usability and suitability to the target language. Several
works have looked at metrics for measuring the usability of
software [2, 7]. We have adapted these metrics to specifically
look at visual IDEs in different domains.

The goal of this study is to evaluate existing IDEs in a
variety of domains to make the developers of cross-domain
generic IDEs aware of the different features needed to make
their tools more usable and suitable by their target users.
generative product line approaches, such as domain-specific
modeling (DSM) [11], would highly benefit from such a
study.

Section 2 describes the methodology and features cov-
ered by our survey. Section 3 summarizes the results of the
study for each IDEs surveyed. In Section 4, we discuss in-
terpretation and limitations of the survey, and conclude in
Section 5.

2. Methods
In the following, we define the terminology used in the study,
the process and criteria for selecting a set of IDEs for the
study, the definition of a set of novel visual IDE interface
features, and the process of evaluation taken for each IDE.

2.1 Terminology

Fig. 1 is a feature model describing the features we consid-
ered for the visual IDEs. They are defined in Section 2.3.

The workspaceof an IDE is sometimes referred to as a
canvasand is an area within the IDE interface with which
the operator directly interacts to create and store content.
Generally, the workspace does not contain a listing of avail-
able tools. Thesupported languageof an IDE is the visual

Language

Complexity
Management

IDE

Connection
Style

Visual Richness

Integration

 Allowed

Indicated
Output Style

Syntax

Enforcement
Relations

Audience

Domain Skill Level

Workspace

Perspective PropertiesTools Interface

Context
Sensitive

Searchable Style Visual Richness Clutter

Human
Interface

Efficiency Element
Creation

Interaction

Essential Interface Keyboard Tertiary
Devices

Mandatory

Optional

Figure 1. Visual IDE feature diagram model

language the IDE allows its user to work in. The IDE in-
cludes features and tools to support development within
this language.Elementswithin the language are syntac-
tic units or lexemes represented visually within the IDE
workspace. Similarly,relationsor connectionsare syntactic
relationships between elements represented visually within
the workspace [4].

2.2 IDE Selection

We decided to select IDEs based on their support for a
visual language as the primary language of development.
A subsidiary criteria for selection included popularity of
the IDE within its domain as well as representation from a
variety of development domains. Thus this survey considers
IDEs from eight different domains: 3D modeling, animation,
modeling, music, prototyping, simulation, visual software
development (e.g.,education, mobile development, etc.), and
business workflow.

2.3 Feature Definition

The following enumerates a unique set of features based on
existing literature and emergence of similarities and differ-
ences between the IDEs considered. Features are categorized
under the following five headings.

2.3.1 Audience Features

The audience of an IDE refers generally to the target popu-
lations for which the IDE is intended.

Domain The domain of an IDE refers to the domain or
field of knowledge under which the interface falls. This is a
nominal variable where example values might includeGen-
eral, Modeling, Software, etc. The latterGeneralindicates
that the IDE is of general purpose and can be applied within
any number of different fields to the same extent.

Skill Level The skill level of an IDE describes what level
of domain expertise is expected of users for using it. This
is a nominal variable where possible values areNovice,
Intermediate, Expert, andGeneral. The latter indicates that
the IDE offers a powerful set of advanced features while
maintaining components that emphasize accessibility and
ease of use.

2.3.2 Chrome Features

The chrome of an IDE is the total set of all graphical user
interface (GUI) components external to the workspace. This
includes every tool, menu, button, or other user interface
component not contained within the workspace area.

General Operations Many IDEs provide support for a spe-
cific subset of common operations. Murphy et al. [13] define
a list of the top 10 IDE features most frequently utilized by
developers. We reproduced it here as a set of Boolean sub-
variables that indicates whether the IDE in question supports
the use of that particular operation. Due to space limitations,
we report only the sum of thetruevalues. The operations are:
deletea syntactic element in the workspace,saveto export a
model to storage media,cut/copy/pastean existing syntactic
element in the workspace,undo the user’s most recent ac-
tion. Content assistprovides suggestions or completion for
elements andrefresh loads contents of workspace and in-
terface dashboard elements from storage media and update
display if necessary.Show viewopens and displays a new
tool in the interface, andnext wordmoves active selection
to the next element according to some natural ordering, for
example as a result of searching.

Context Sensitive Tools Any interface component which
changes visibly or is generated anew depending on the con-
text of selected elements within the workspace is context

sensitive,e.g.,a popup context menu that appears when an
element is clicked which provides tools or information about
the clicked element. This Boolean variable indicates whether
context sensitive tools are supported.

Degree of Interface Visual RichnessThis describes the
extent to which an IDE utilizes visual variables to increase
the visual discrimination of tools it offers as advised by
Tufte’s guidance [14] and Moody’s specifications [12]. This
compound variable is composed of eight sub-variables, each
being a Boolean measure determining whether or not the
described visual variable is utilized in the interface to dis-
tinguish between available tools in the IDE. Due to space
limitations, we report only the sum of thetrue values. The
variables include:icons[4, 12] as images contained in a bor-
der of a standard size and shape,shapes[12], tool size[12],
color [12], text or typographic variation [12],texture [12]
as shading or shadows,brightnessof a color (i.e., its per-
ceived luminosity) [12], andorganizational coherence[2] to
determine if components with related purpose are visually
grouped together in the interface.

Multiplicity of Perspectives A perspective is defined as a
visual configuration of tools in the GUI for the purpose of
accomplishing a distinct task as part of a distinct process,
e.g.,debugging, file browsing, manipulation of element de-
tails. Some IDEs,e.g.,MST Workshop, even support mul-
tiple languages or domains through the use of perspectives
by offering entirely different feature sets. This metric mea-
sures the number of available predefined interface perspec-
tives available to the user, with values greater than zero.

Object Properties Window This is an interface component
that displays the properties of an element in the workspace,
typically to view and modify properties of model elements.
For example, the IDE GNU Radio Companion (GRC) al-
lows elements to take user-defined values for various prop-
erties (e.g., frequency, amplitude). These properties can be
manipulated when the user explicitly requests the properties
dialog window for that element. This is a nominal variable
whose values are:None if no object properties window is
available,Omnipresentif such window is always present, al-
lowing contents to update contextually, andManual if such
window requires user interaction to bring forward.

Searchable ToolspaceThis is a Boolean variable that indi-
cates whether the total set of available tools, components,or
actions offered by the IDE can be searched through by name
or keyword,e.g.,Caméléon which provides the user a search
box to navigate its library of predefined available elements.

Toolbar Styles These refer to the set of GUI component
idioms employed by the IDE [6]. This nominal variable can
take combinations of multiple values, such as:Icons, Menus,
Ribbons, Trees.

Visual Clutter The clutter of an interface is the number
and organization of tools available on the screen versus the

amount of workspace provided by the IDE [3, 6]. If the
IDE offers no method for tool organization or if there is
an immense amount of tools visible at once, then the IDE
is likely to be visually cluttered. IDEs which, for example,
simply list available tools in rows of toolbars (e.g.,Fig. 2)
do not offer options for interface organization and represent
high visual clutter. Visual clutter is a nominal variable and
takes the valuesLow, Medium, orHigh. Section 2.4 includes
details on the proper evaluation of this qualitative feature.

2.3.3 Human Interface Features

The human interface features of an IDE include aspects of
the software interface that affect how the user interacts with
the IDE, either mechanically (e.g.,through physical devices
and media) or mentally (e.g.,the mental load required of the
user to operate the IDE).

Essential Efficiency The essential efficiency of an IDE
measures the level to which the system automates tasks for
the user. It is calculated as the ratio of the number of steps
in a concrete use caseC to the number of steps in the
essential use caseE as depicted in Equation 1. A concrete
use case describes the steps in the specific IDE to perform
the same tasks as in an essential use case. This metric, unlike
those for automation put forth in [15], does not require user
experience reports and can be measured through simple use
case analysis. Section 2.4 gives more details on the essential
use cases considered.

1−
C

E
(1)

Interface Efficiency The interface efficiency of an IDE is
a concept related to the productivity of an interface. It mea-
sures the number of physical actions (including keystrokes,
mouse clicks, and fine mouse movements)A required of the
user to complete a task compared against the number of ab-
stract steps in the essential use case, as depicted in Equa-
tion 2.

1−
A

E
(2)

This metric is different from the Essential Efficiency pro-
posed in [2] because it studies physical user actions instead
of concrete task steps. Also note that this variable can take
negative values, indicating that the number of physical ac-
tions required to complete an essential use case exceeds the
number of abstract steps in the use case.

Keyboard Use This refers to the extent to which an IDE
utilizes the use of a keyboard. This can range from a com-
plete absence of any keyboard actions to providing certain
actions which only a keyboard can perform. Keybindings
(optional or required) are a common way to provide key-
board interactivity.

This nominal variable can take the values:None when
no keyboard use is supported,Simplewhen the keyboard is

used only for typing annotations, properties, or comments,
Optional when the option to use the keyboard to execute
some actions is present, but these actions can also be com-
pleted using a mouse, andRequiredwhen there are actions
that can only be completed through the use of the keyboard,
no mouse equivalent is available.

Mode of Element Creation This describes the process
through which the user creates elements in the IDE. The
Drag n Drop process refers to a single mouse press event
followed by a dragging motion of the mouse and completed
when the mouse button is released,e.g.,selecting and drag-
ging a template into the canvas to create a new element. The
Point n Clickprocess utilizes a single mouse click to indicate
a selection followed with subsequent mouse clicks elsewhere
to define placement,e.g.,clicking a tool symbol to select ac-
tive element type and then clicking in the workspace to cre-
ate elements at specific positions. This nominal variable can
take one of four possible values created by combiningDrag
n Drop or Point n Click with the multiplicity of the action:
either (1:1) or (1:n). The former multiplicity indicates that
a single element is created for each action, while the latter
indicates that multiple can be created after the action.

Tertiary Interface Devices This nominal variable describes
any third party human interface devices which can be used to
interact with the IDE. This could include audio devices such
as MIDI keyboards or microphones, mobile integration, etc.
Variable values are the type of tertiary devices allowed for
the IDE. AudioMulch and Max, for example, allow for the
integration of microphones as data input devices. AppInven-
tor supports exporting to mobile devices.

2.3.4 Integration Features

Integration is the manner with which the IDE integrates with
the visual language it supports. This includes any visual
representation of language syntax or semantics, as well as
any tools to assist the user with understanding the supported
language.

Allowed Relations Indicated This refers to an IDE’s abil-
ity to emphasize possible syntactically correct connection
points. This is often demonstrated with either the highlight-
ing of allowed relations or the dimming of impossible rela-
tions,e.g.,Caméléon which color codes available connection
endpoints when the operator begins creating a connection.
Boolean values indicate whether the IDE supports this fea-
ture or not.

Output Generation Style This nominal variable describes
the mode with which the IDE renders and displays out-
put to the user. It is a dual axis nominal variable, measur-
ing whether output is direct or indirect as well as live or
caused by a trigger.Direct/indirect describes whether the
user directly modifies output or acts via a layer of abstrac-
tion (e.g.,via a model as in Grasshopper, or directly as in
Blender).Live/triggerdescribes whether output is generated

and displayed live or after some event triggered by the user,
e.g.,a compilation or build request.

Syntax Enforcement The level of syntax enforcement of
an IDE describes the mode with which the IDE enforces
its supported language’s syntax requirements, if at all. The
nominal valueExplicit indicates that the IDE explicitly en-
forces syntax requirements by indicating to the user the pres-
ence of any syntax errors,e.g.,error popups informing the
user that their creation has an error.Implicit enforcement in-
dicates that the IDE does not allow syntactically illegal oper-
ations to occur in the first place by means of some structural
mechanism,e.g.,snapping puzzle piece elements which do
not snap to illegal connections. The valueNone indicates
that the IDE does not support syntax enforcement and the
user is required to review their models’ syntax manually.

2.3.5 Language Syntax Features

Language syntax variables describe properties of the sup-
ported visual language syntax. While not strictly compo-
nents of the IDE, they are intimately tied to the overall style
of the IDE and thus included in this study.

Complexity Management Any characteristics or features
of the visual language that serve to reduce the complexity
of that language. Reducing complexity refers specifically
to decreasing the level ofdiagrammatic complexitywhile
maintaining information transfer to the user [12]. This canbe
implemented variously,e.g.,modularization of large projects
into files or hierarchical abstraction into levels of detail.

This nominal variable can take one of three possible val-
ues.Modularizationindicates that large systems within the
language are divided into smaller subsystems to reduce com-
plexity [12].Hierarchyindicates that systems within the lan-
guage can be represented at different levels of detail [12].
None indicates that the visual language does not support
complexity management functionality.

Connection Style A language’s connection style refers to
the manner with which connections between elements are
displayed. This dual axis nominal variable measures connec-
tions asoverlappingvs.linked as well as connection sources
aspoint vs.regionbased [4]. The former axis describes the
visual representation of the connections, while the latterde-
scribes how links are connected. MST Workshop, for exam-
ple, allows the user to overlap points on elements in order
to indicate connection, whereas Grasshopper requires spe-
cific linking between points on elements. If the supported
language does not fall on either of these axes, it is not con-
nection based [4] and this feature takes the valueGeometric.

Degree of Language Visual RichnessThis describes the
extent to which a language utilizes visual variables to in-
crease the visual discrimination of its elements. This is a
compound variable composed of ten sub-variables, each be-
ing a Boolean measure similarly to the IDE’s homologue.
The same sub-variables are icons, shapes, size, color, text,

texture, and brightness. Additionally,orientation, horizontal
andvertical positioning[12] are added to further distinguish
between elements.

2.4 IDE Evaluation

With IDE feature definitions established, we evaluate each
IDE by measuring the different metrics according to each
feature. Most features only require simple classification
or binary evaluation tasks. However, three features require
more intensive evaluation.

2.4.1 Evaluation of Visual Clutter

Evaluating the visual clutter of an IDE requires qualita-
tive user feedback. We used Amazon.com’s Mechanical
Turk (MTurk) as a crowd-sourcing platform to perform the
user study and gauge opinions of visual clutter. We gen-
erated three unique screenshots of each IDE and darkened
the workspace area to remove attention from diagrammatic
complexity. See Fig. 2 as an example image provided on
MTurk. These images were distributed as MTurk Human
Intelligence Tasks (HITs), requiring five unique evaluators
per HIT. On average, each evaluator spent about one minute
studying and rating an image on a scale of 1 (low clutter) to
5 (high clutter). Each HIT rewarded its evaluator with $0.02.
IDE rating values were retrieved and averaged between each
reviewer for one screenshot and then each screenshot for one
IDE. Upon completion, the HITs were rated by 12 anony-
mous workers in total.

Because multiple reviewers rated each image, we per-
formed an Inter-Rater Reliability (IRR) measure to ensure
agreement across reviewers. Using the R statistical library
irr we perform a two-way agreement average-measure Intra-
Class Correlation (ICC). The result, ICC = 0.648, is within
the “good” range of significance [1, 9]. This ICC value in-
dicates that the reviewers were, in general, in agreement
about their ranking of interface clutter. Note that there were
more than five reviewers participating total, despite five
sets of reviews (i.e., the experimental design is not “fully
crossed” [9]). We argue that this is not significant, however,
because the five sets of reviewers are disjoint sets, acting as
entirely independent actors.

2.4.2 Evaluation of Efficiency

The evaluation of both interface and essential efficiency in-
volved the creation of use cases for each IDE and subse-
quent evaluation of the corresponding concrete use cases.
We developed two essential use cases common to all IDEs
and a third one that differed slightly for each. The two sim-
ple essential use cases wereOpen FileandCreate Element,
three and four steps respectively. The third, complex essen-
tial use case varied between IDEs depending on applicabil-
ity: Create and Link Elements(13 steps),Create Element
and Transform(10 steps),Print an Integer in Piet(12 steps),
Print a Character in TouchDevelop(9 steps). The three es-
sential use cases were ordered of increasing task complexity.

Figure 2. Sample IDE screenshot provided on Mechanical
Turk (Visual Paradigm)

Each essential use case was then manually performed within
the IDEs to generate corresponding concrete use cases. Ev-
ery physical action required for completion was tracked:
keystrokes, mouse clicks, and fine mouse movements.

After all concrete use cases were completed, we noticed
that the results from the first two (less complex) use cases
did not vary significantly enough across IDEs. We therefore
report only the results from the more complex use case for
each IDE.

3. Results
Tables 1–3 outline the results of the evaluation of the 25
IDEs we considered in this study. We give further explana-
tions below for each in alphabetical order. What follows is
based on the measured evaluation results accompanied with
our own opinion of each tool.

Alice3 One of the earliest educational interfaces present in
this study, Alice has influenced a great deal of later IDEs,
including Stencyl, AppInventor, and Scratch to name a few.
Designed primarily as an educational programming environ-
ment, Alice only targets users with a low level of skill in its
domain. It makes up for this loss in accessibility, however,
with its wide, almost universal, support of common IDE fea-
tures as well as context-sensitive tooling. Alice3, the cur-
rent release, provides a medium level of visual richness in
its interface chrome, but boasts one of the highest essential
efficiency values. This efficiency value is achieved through
the style of visual syntax proper to Alice and its successors.
However, despite greatly reducing operator mental load, its
visually cluttered design only manages a near-neutral inter-
face efficiency. The introduction of optional keybindings is a
redeeming factor for Alice3 and, like most educational pro-
gramming IDEs, Alice3 includes simple modular complex-
ity management and a visually appealing level of language
visual richness.

IDE FEATURES CONTEXT TOOL RICHNESS PERSPECTIVES PROPERTIES SEARCHABLE TOOL STYLE CLUTTER

Alice3 8 Yes 6 2 Omnipresent No Tabs 3.40

AToMPM 4 No 5 1 Manual No Modular 2.60

AudioMulch 7 Yes 6 2 Manual No Tree, Windows 3.13

Blender 7 Yes 7 Multiple Omnipresent No Multiple 4.00

Caméléon 3 Yes 5 1 Manual Yes Tree 2.07

EMF 9 Yes 5 Multiple Manual Yes Tree, Icons 4.07

GNU Radio Companion 6 No 4 1 Manual Yes Icons 2.80

Grasshopper 3D 7 Yes 4 1 None Yes Ribbons 2.80

Max 7 No 4 2 Manual Yes Tree, Windows 2.73

MetaEdit+ 7 Yes 4 3 Manual No Icons, Windows 1.93

MIT AppInventor2 3 Yes 4 2 Omnipresent No Drawers 3.27

MST 6 No 3 1 Manual No Icons 2.40

Piet Creator 4 No 7 1 None No Icons 2.13

Scratch 3 No 6 2 None No Drawers 3.53

SimuLink 7 No 3 1 Manual Yes Icons, Tree 3.80

Stencyl 6 Yes 8 Multiple Manual Yes Tabs, Icons 2.73

Tersus 8 No 3 1 Omnipresent No Drawers 3.20

TouchDevelop 6 Yes 6 1 None No Icons 3.60

UMLet 6 No 3 1 Omnipresent No Palette 3.00

VioletUML 6 No 4 1 Manual No Drawers 2.47

VisSim 8 No 4 1 Manual Yes Tree, Menu 3.33

Visual Paradigm 7 Yes 5 1 Omnipresent No Icons, Menu 3.67

Visual Use Case 3 No 4 7 Manual No Icons, Tree 2.67

WebRatio 8 No 4 3 Omnipresent No Icons, Menu 3.93

YAWL 5 No 5 2 Omnipresent No Icons 2.27

Table 1. Measure of the chrome of IDEs.

IDE AUDIENCE Human Interface

DOMAIN SKILL EEFFICIENCY IE FFICIENCY K EYBOARD M ODE DEVICES

Alice3 Animation Novice 0.46 0.08 Optional Drag n Drop (1:1) None

AToMPM Modeling Intermediate 0.23 0.15 Optional Point n Click (1:n) None

AudioMulch Music Expert 0.31 0.31 Simple Drag n Drop (1:1) Keyboards

Blender 3D Modeling Expert 0 -0.2 Required Point n Click (1:1) None

Caméléon Prototyping Intermediate 0.23 0.31 Required Drag n Drop (1:1) None

EMF Software Expert 0.23 0.62 Optional Point n Click (1:1) None

GNU Radio Companion Software Intermediate 0.38 0.62 Optional Drag n Drop (1:1) None

Grasshopper 3D 3D Modeling Intermediate 0.31 0.31 Optional Point n Click (1:1) None

Max Music Expert 0.15 0.15 Simple Drag n Drop (1:1) Microphones

MetaEdit+ Modeling Intermediate 0.31 -0.08 Simple Point n Click (1:1) None

MIT AppInventor2 Software Novice 0.46 0.54 Simple Drag n Drop (1:1) Mobile

MST Simulation Intermediate 0.38 0.38 Simple Point n Click (1:1) None

Piet Creator Software General 0.17 -0.33 None Point n Click (1:n) None

Scratch Software Novice 0.46 0.54 Simple Drag n Drop (1:1) None

SimuLink Simulation Expert 0.31 0.15 Simple Drag n Drop (1:1) None

Stencyl Software Novice 0.46 0.54 Simple Drag n Drop (1:1) Mobile

Tersus Software Intermediate 0.31 0.15 Simple Point n Click (1:1) None

TouchDevelop Software Novice 0.44 0.33 None Point n Click (1:1) Mobile

UMLet Modeling General 0.31 -0.15 Simple Drag n Drop (1:1) None

VioletUML Modeling Intermediate 0.15 0.15 Simple Point n Click (1:n) None

VisSim Simulation Expert 0.31 0.31 Simple Drag n Drop (1:1) None

Visual Paradigm Modeling Intermediate 0.23 0.23 Simple Drag n Drop (1:1) None

Visual Use Case Modeling Intermediate 0.54 0.38 Simple Point n Click (1:1) None

WebRatio Software Intermediate 0.23 0.23 Simple Point n Click (1:1) None

YAWL Workflow Expert 0.31 0.31 Simple Point n Click (1:n) None

Table 2. Measure of the human interface of IDEs and their intended audience.

IDE Integration Language Syntax

RELATIONS OUTPUT SYNTAX COMPLEXITY CONNECTION L ANGUAGE RICHNESS

Alice3 No Direct Triggered Implicit Modularization Overlapping Regions 8

AToMPM No Indirect Triggered Explicit None Linked Regions 6

AudioMulch Yes Indirect Live Implicit None Linked Points 3

Blender No Direct Live Implicit Modularization Geometric 9

Caméléon Yes Direct Live Explicit Hierarchy Linked Points 5

EMF No Indirect Triggered Explicit Modularization Linked Points, Linked Regions 5

GNU Radio Companion No Indirect Triggered Explicit None Linked Points 2

Grasshopper 3D No Indirect Live Explicit None Linked Points 6

Max No Indirect Live None Modularization Linked Points 5

MetaEdit+ No Direct Live Implicit Modularization Linked Regions 5

MIT AppInventor2 No Direct Triggered Implicit Modularization Overlapping Regions 9

MST No Direct Live None None Overlapping Points 4

Piet Creator No Indirect Triggered None None Geometric 4

Scratch No Direct Triggered Implicit Modularization Overlapping Regions 10

SimuLink No Indirect Live None None Linked Regions 4

Stencyl No Direct Triggered Implicit Modularization Overlapping Regions 10

Tersus No Direct Triggered None Hierarchy Linked Points, Linked Regions, Geometric 3

TouchDevelop No Indirect Triggered Explicit Modularization Geometric 4

UMLet No Direct Live None None Overlapping Points 4

VioletUML No Direct Live Explicit None Linked Regions 4

VisSim No Direct Live None Hierarchy Linked Points 4

Visual Paradigm No Direct Live Implicit None Linked Regions 2

Visual Use Case No Direct Live None Modularization Linked Regions 3

WebRatio No Indirect Triggered None Hierarchy Linked Regions, Geometric 4

YAWL No Direct Triggered None None Linked Regions 4

Table 3. Measure of the integration and language syntax of IDEs.

AToMPM AToMPM is unique among the IDEs in this
study in that it is built as a modeling framework specifically
to develop domain-specific modeling IDEs. While AToMPM
does not support a large number of popular IDE features or
visual richness variables, its modular toolbar system helps
to reduce visual clutter by loading only the features the user
deems necessary. AToMPM allows for a small number of
optional keybindings which can help increase utility, but es-
sential efficiency and interface efficiency are only slightly
above a one-to-one ratio with the essential use cases. Ex-
plicit syntax enforcement is provided which protects the user
from potential illegal operations, but no complexity man-
agement system is in place to handle user mental load. Be-
cause AToMPM is used to develop IDEs it can be argued that
resulting generated AToMPM tools may score differently,
but overall AToMPM achieves roughly average performance
compared to other IDEs in the study.

AudioMulch Although AudioMulch offers a wide array of
tools and an in-depth interface ideal for professionals in the
music industry, the overall complexity of the design greatly
reduces the accessibility for anyone else. Nevertheless, it
supports a large amount of popular IDE features and offers
equally high essential and interface efficiency ratings. This
is visually assisted by a relation-highlighting feature which
also provides AudioMulch with an implicit syntax enforce-

ment, both of which greatly aid the user in model creation.
Unfortunately, there is no effort made to manage the high
amount of complexity within the IDE and virtually all of the
canvas elements look exactly the same, ultimately awarding
AudioMulch with a low language visual richness score.

Blender Designed for a skilled target audience of experts
in the domain, it is no surprise that Blender supports most
common IDE features as well as context-sensitive tooling.
Its high level of chrome visual richness and the large num-
ber of perspectives available relative to the average found
in this study also contribute to a high quality interface.
However, the fact that it offers so many features leads di-
rectly to the second highest observed value for visual clutter.
Blender possesses no particular efficiency techniques, re-
maining around a perfect one-to-one relationship with the
measured essential use cases. Its heavy use of the keyboard
reduces accessibility to a wider audience, although the tar-
get skill level is already a limiting factor. Finally, Blender
provides modularization complexity management through
saving and duplication tools, along with one of the most
visually rich languages observed.

Caméléon Intended for rapid, flexible visual prototyp-
ing of functional algorithms, Caméléon is relatively feature
impoverished — it only supports three of the most pop-
ular IDE features. It does however boast a large number

of available tools that are conveniently searchable. The in-
terface chrome of Caméléon employs five visual richness
variables, slightly above the average count. Its low visual
clutter interface provides a positive level of essential and in-
terface efficiency. Interaction requires use of the keyboard
for non-essential actions, specifically advanced navigation
and zooming. Caméléon supports the user by interactively
highlighting allowed syntactic relations and explicitly en-
forcing syntax requirements. More support is provided by
its hierarchical complexity management system. Overall,
Caméléon is an efficient, simple tool with a large library of
functionality and a focus on supporting syntax requirements.

Eclipse Modeling Framework EMF is one of the most so-
phisticated IDEs in this study and demands an expert level of
skill from target users. It is also the only IDE studied which
supports all of the measured popular features, as any ex-
pert in the domain would likely come to expect. The Eclipse
Modeling Framework (EMF) interface chrome supports five
visual richness variables as well as a large number of pre-
defined interface perspectives. The high level of supported
perspectives, while perhaps intimidating, increases the over-
all power and utility of the interface. Additionally, the EMF
tool space is searchable, which counterbalances the high-
est observed level of visual clutter. Despite being extremely
cluttered, EMF has average levels of essential efficiency and
the highest measured level of interface efficiency. The sup-
ported visual languages do not make use of more than five
visual variables but do allow for complexity management.
Overall, EMF is well suited for an expert user with high effi-
ciency and several convenience features, but is too cluttered
and not visually rich enough to support a wider audience of
varied skill levels.

GNU Radio Companion GRC is a simple platform de-
signed to aid the development of signal processing software
without the need to understand or write code. It does, how-
ever, require a moderate level of skill in the domain. GRC
supports slightly more than the average number of popular
IDE features as well as the ability to search through available
tools. The interface chrome of GRC only utilizes four visual
variables while the supported language only employs two.
Despite this, the interface is highly efficient, with the high-
est observed interface efficiency and a correspondingly high
level of essential efficiency. It also supports optional key-
board use and explicit syntax checking. GRC is designed as
an easy-to-use interface for non-programmers and manages
to maintain simplicity while still offering a large amount of
technical power.

Grasshopper 3D Though Grasshopper is able to provide
the user with a relatively simple and easy-to-use interface,
beginners would likely shy away from the complexity of its
core functionality. Even so, it offers a high amount of pop-
ular IDE features and context sensitive tools, as well as the
ability to search through its vast library of tools quickly and

easily by name. Grasshopper also possesses very good effi-
ciency techniques, maintaining both values at a more-than-
decent level. In addition, the optional use of a keyboard is
supported, offering functionality on another level to increase
accessibility. However, complexity management is not sup-
ported at all and visual richness in both the language and
tools are mediocre at best.

Max Its overly simple appearance can be misleading—it
is very much designed for skilled users in the music de-
velopment domain. Max supports several popular features
and an average number of visual richness variables in both
its chrome and supported language. Its use of a searchable
toolspace is unique among the studied IDEs: in order to cre-
ate almost any advanced element in the workspace, the user
must search by name or description for the element. Only a
small subset of its functionality can be reached otherwise.
This simultaneously radically reduces visual clutter by hid-
ing most elements from the user, while also drastically in-
creasing mental overhead for users. Max offers a below av-
erage level of interface and essential efficiency, as well asa
convenient modular complexity management system. Once
mastered, Max can be a powerful and efficient tool for de-
veloping music and audio processing tools, but the amount
to which the library of functionality is removed from the user
can be intimidating and, ultimately, greatly decreases acces-
sibility.

MetaEdit+ As for AToMPM, MetaEdit+ is a tool for creat-
ing domain-specific modeling environments. Aimed towards
an intermediate level of users, the many different tasks and
steps that go into the design of a simple model in MetaEdit+
can easily be overwhelming for newer users. These tasks are
fortunately divided through modularization, allowing them
to be much more manageable within the IDE. Furthermore,
many of the popular IDE features as well as context sensitive
tools are present in the interface, increasing the accessabil-
ity even more. MetaEdit+ also holds the lowest clutter value
and integrates an inplicit syntax enforcement, providing the
user with a clear and easy-to-use workspace. A favorable es-
sential efficiency value is also present, whereas the interface
efficiency suffers from its necessity to complete a dialog for
each created element.

MIT AppInventor Much like Alice and the other educa-
tional interfaces, MIT’s AppInventor is designed for an un-
skilled, novice audience, reducing the breadth of target au-
dience. AppInventor does not conform to the expected stan-
dards by only supporting three of the top ten popular fea-
tures. While colorful, AppInventor’s interface only supports
four visual variables to distinguish elements in the chrome,
relying heavily on icons and text. It combines the Alice style
of visual syntax along with a Drag n Drop element creation
workspace, resulting in high levels of effective and interface
efficiency. Another artifact of the Alice style of visual syn-
tax is its implicit syntax enforcement, assisting the user by

preventing illegal structures. Finally, the high level of lan-
guage visual richness and modular complexity management
scheme result in an overall visually pleasant experience.

MST Workshop Though MST Workshop offers a very
simple and easy to use interface, it does not offer much ex-
planation as to the use of its many different simulation cat-
egories. As such, they are unusable by anyone without prior
knowledge of that subject, drastically limiting its accessibil-
ity. In the same vein, it does not incorporate enough visual
richness variables to easily discern or interpret the toolsand
very few popular IDE features are supported. Though the ef-
ficiency values are above average and the clutter was rated to
be relatively low, no actions were made to reduce the com-
plexity of the system or even enforce the language’s syntax.
All of this merged together with a less-than-stellar language
visual richness level shows that MST Workshop definitely
has room for improvement.

Piet Creator As the primary IDE used in the creation of
Piet programs, Piet Creator provides a very simple interface
for novices without limiting the usability for more expert
users. On top of that, the toolbars utilize seven of the eight
tool visual richness variables and it possesses an extremely
low clutter rating, maximizing accessibility for all users.
However, Piet Creator does not offer any sort of properties
dialog, eliminating the ability to manage data on a deeper
level. The user is also limited to using only the mouse for
every task, which creates a poor combination with the fact
that Piet Creator holds the lowest interface efficiency value.
The Piet language syntax is not enforced in the slightest,
forcing the user to manually debug his whole program to
locate any error in the code. In general, the simplicity of
the design allows for a visually appealing environment, but
creates a dearth of features.

Scratch Scratch is specifically targeted toward a novice
audience with a low skill level, and only supports three of the
top ten popular features. The interface employs an average
level of visual richness variables, and does not even define
an object properties window. The sparse, cluttered interface
redeems itself through high values of essential and interface
efficiency. Implicit syntax enforcement provides a safe envi-
ronment for learning users, and the highest observed level of
language visual richness provides an engaging, visually rich
display. The focus on efficiency and visual richness works
well in an IDE designed for education by accelerating rein-
forcement and engaging student attention.

Simulink Though Simulink features a plethora of compo-
nents that can allow it to perform virtually any electrical sim-
ulation, the vast scope of its functions and the amount of on-
screen tasks greatly reduces its accessibility. Each individual
function that Simulink provides creates its own dialog win-
dow on screen, severely increasing visual clutter and com-
plexity with prolonged use and no techniques for complex-
ity management. A searchable toolspace is present to take

off some mental load in dealing with Simulink’s huge tool
libraries, however very few visual richness variables are inte-
grated to increase discernibility between the tools. The can-
vas elements also provide some relatively good efficiency
values, though the IDE provides no features to enforce the
syntax of the simulation language. The lack of visual rich-
ness overall detracts from the usability and enjoyment of this
tool, despite it being very powerful.

Stencyl It provides a very easy-to-use interface for game
software creation for an early level audience, but in the pro-
cess sacrifices any higher level functionality. This IDE also
integrates the Alice style of coding, which carries along
with it very high efficiency values and implicit syntax en-
forcement. Every tool visual richness variable is utilized
within the toolbars, which are also searchable, allowing for
a very user-friendly and productive interface. Each language
visual richness variable is supported within the canvas as
well, thereby giving Stencyl perfect visual richness ratings.
A very large number of perspectives are present due to Sten-
cyl’s powerful modularization techniques, greatly reducing
the amount of mental strain on the user to handle the many
steps that go into creating a game and showing Stencyl to be
an altogether organized and well-designed IDE.

Tersus It is able to offer an interface for web application
design with a very large number of popular IDE features,
largely thanks to the integration of Eclipse’s user interface.
Unfortunately, very few visual richness variables are utilized
for either the tools or the language and there is no syntax
enforcement to aid the user at all through the design process.
The efficiency of the IDE is at an acceptable level. Tersus
hits a high point with its use of a hierarchical design to
program behaviors and functions of the various components
in the model. Though this is a very useful feature, it does not
distract at all from the overly simplistic language.

TouchDevelop Designed as an educational program as part
of Microsoft’s “Hour of Code" campaign, TouchDevelop of-
fers a simple user interface with a very limited functionality.
Though the model itself is textually code based, the code
is written by pressing buttons representing different com-
mands, objects, attributes, etc., increasing both essential and
interface efficiency by a good margin. However, the large,
on-screen keyboard gives the interface a slightly cluttered
feel and the text-based model places limits on the amount of
language visual richness variables that can be integrated in
the design.

UMLet UMLet provides a general purpose, easy-to-use
software interface with no particular expectations about user
skill level in Unified Modeling Language (UML). It offers
many of the most popular IDE features a user might expect,
but does not offer a visually rich chrome or language. Con-
ceptually efficient but ultimately visually cluttered, UMLet
measured high in essential efficiency but low in interface ef-
ficiency. To the detriment of the inexperienced user, UM-

Let offers no syntax enforcement. It also offers no complex-
ity management devices to ease mental load. Barebones to
the extreme, UMLet provides users with a visually simple
interface and no additional usability features like context-
sensitive tooling or searchable tools. Its power, however,lies
in its simplicity and ease of use at any entry skill level.

Violet Similar to UMLet, Violet provides an easy-to-use
interface with no specific entry skill level assumptions about
UML. It offers the same common IDE features as UM-
Let, with a slightly richer chrome. The interface of Violet
is slightly less cluttered than in UMLet, but also offers a
lower essential efficiency. Violet is higher in interface ef-
ficiency over UMLet, though. Neither interface offers syn-
tax enforcement or complexity management and, since both
support UML as the target visual language, both share a low
level of language visual richness. The two interfaces are rel-
atively featureless and differ primarily in the mode of user
interaction.

VisSim VisSim is a highly sophisticated visual simulation
tool, designed for experts in the field. By supporting most
popular IDE features, VisSim meets most developer expec-
tations. The interface and language are adequately visually
rich, supporting the average count of four visual variables.
The large library of functionality is conveniently search-
able, and the interface is highly efficient overall. VisSim has
an easy-to-use hierarchical complexity management system
which reduces overall mental load, but a lack of syntax en-
forcement may leave users in a dangerous position, forcing
them to rely on verification at run-time only.

Visual Paradigm It offers a UML-based interface de-
signed to support every defined UML diagram. As such,
however, much of the functionality may be overwhelming to
a novice to UML architecture. Many popular IDE features
are present, though, as well as context sensitive tools for a
slightly more accessible use. The design of Visual Paradigm
allows for implicit syntax enforcement, a very useful fea-
ture when dealing with UML, with an acceptable interface
efficiency and average essential efficiency value. An unfa-
vorable amount of clutter is present in the IDE however, and
no effort is taken to manage complexity throughout the in-
terface. Visual Paradigm also suffers of an extremely low
amount of language visual richness, due to UML standards.

Visual Use Case Unlike Visual Paradigm which supports
the creation of all UML diagrams, Visual Use Case gives
an in-depth approach to the requirements workflow with a
focus on use case creation. Many different perspectives are
provided as modularization tools to allow the microman-
agement of the different use cases. Some perspectives uti-
lize pieces of information from other perspectives for auto-
completion, awarding Visual Use Case with a very high in-
terface efficiency as well as the highest essential efficiency
value. The extent at which the IDE goes into detail does not
make it ideal for beginners, however, and very few popu-

lar IDE features are integrated in the design. Its high degree
of visual richness stacks up rather poorly as well, and the
syntax within the various perspectives is not enforced much.
Overall, if Visual Use Case’s users can get it past its lack of
accessibility, it turns out to be a very powerful and in-depth
tool for managing use cases.

WebRatio Similar to Tersus, WebRatio provides a web ap-
plication creation interface with many popular IDE features.
The overall visual richness of WebRatio is improved over
that of Tersus, however the essential efficiency is slightly
worse. WebRatio possesses a much larger amount of clutter
as well, but it also incorporates a couple more perspectives
for model management. Additionally similar to Tersus is the
use of a hierarchical design to manage complexity within
the system, although the syntax of the modeling language
is not enforced either. Though WebRatio and Tersus tend to
be similar in many ways, each have their own pros and cons
which leaves it up for the user to determine his own prefer-
ence of the two.

YAWL YAWL is a business workflow system that supports
a simple, UML-like modeling language. Despite its simplic-
ity, YAWL is targeted toward skilled members of its do-
main. YAWL is lacking in its support of popular IDE fea-
tures and any form of active syntax checking. Complex dia-
grams are also difficult to manipulate given the lack of com-
plexity management paradigms. YAWL also only supports a
slightly lower than average number of visual richness vari-
ables in both the chrome and language. The language itself
especially suffers from lack of visual richness with highlyvi-
sually similar, square elements. However, YAWL’s interface
has a very low clutter value and high degrees of efficiency.
Ultimately, the negatives outweigh the positives and, though
minimal and efficient, YAWL is overall not visually appeal-
ing and poor in IDE features.

4. Discussion
Agreement on visual features indicates a common theme
among studied IDEs . The feature that exhibited the most
agreement between IDEs was the number of available per-
spectives, with 13 IDEs containing only a single one. The
next most agreed upon features are interface visual richness
and language visual richness which both share 9 IDEs that
support only four visual richness variables for either inter-
face or language. Note that IDEs do not necessarily employ
the same number of visual richness variables for interface as
well as supported language.

The prevalence of a single perspective in most studied
IDEs indicates a tendency toward simplicity of user control.
By introducing multiple perspectives, an IDE offers the user
a richer set of controls and wider variety of views on the
model, but also adds to the user’s mental load in keeping
track of new details.

As indicated by Moody [12] a larger magnitude of vi-
sual richness variables correlates to a more visually discrim-

inating and thus rapidly understandable interface. With most
IDEs settling on four visual richness variables employed,
the common theme among sampled IDEs is to a mid-range
value. It is possible that too many visual richness features
may be considered “junk”, as per Tufte’s warning [14].

Many IDEs would be able to benefit through the imple-
mentation of simple, positive features like the addition of
visual richness variables. Additionally, only 11 IDEs imple-
ment context sensitive menus. Even simple convenience fea-
tures, like the ability to search through available tools, are
common in less than half of studied IDEs. This lack of sim-
ple, positive features actually tends to detract from the over-
all quality and usability of an interface.

Some IDE features can be related to one another. The col-
lected data suggests that interface and essential efficiency
are significantly related. A Pearson’s product-moment cor-
relation test indicates that the two variables share a corre-
lation coefficient of0.556 with p = 0.003893. Neither in-
terface nor essential efficiency significantly correlate with
visual clutter however, withp > 0.4 for each. The relation-
ship between interface and essential efficiency is expected,
not only due to similarity of the metrics use for each, but be-
cause of the underlying concepts. The more automation or
efficiency an interface directly offers to its users, the more
efficiency is provided to the user as a mental load deduction.
That is, without the need to focus on details of implemen-
tation in the interface, the user is free to concern himself
with other manually controlled details. These manually con-
trolled details are emphasized as more important in the IDE
designers by virtue of not being automated.

Overall, the relationships determined by this initial study
indicate an emphasis on managing operator mental load in
visual IDE design. Many sampled IDEs offer a number of vi-
sual variables to the user providing increased visual discrim-
ination for ease of use. Additionally, the relationship found
between interface and essential efficiency hints that interface
design plays directly into the mangitude of user mental load.

5. Conclusion
The usability and suitability of an IDE can begin to be under-
stood through an analysis of its interface characteristics. De-
sign decisions involving the intended audience, the chrome
or interface of the IDE, the style of human interaction, and
features that affect level of language support all impact the
overall usability and suitability. Even simple convenience
features, like context sensitivity of searchable tools, can pos-
itively impact usability. Meanwhile, a lack of more integral
characteristics, like visual richness, can very negatively im-
pact the quality of an IDE.

The features discussed in this paper are inspired from
software engineering approaches and methodologies. A
more in-depth list of feature based on human-computer in-
teraction theories will complement this study, such as the
work by Green and Petre [7] of incorporating a cognitive

dimension in visual programming environments. This is left
for future work.

This is a preliminary study that is not exhaustive. Addi-
tional visual IDEs need to be considered to grow the body of
collected data. Research into new features, revision of exist-
ing features, and additional analytical steps that follow after
data collection would further the gained understanding of
studied IDEs. The goal of this study has been to provide a
technical foundation for the systematic analysis and under-
standing of domain-specific visual IDEs.

Acknowledgments
This research was sponsored by the National Science Foun-
dation grant no. 1156563 at the University of Alabama REU
site.

References
[1] D. V. Cicchetti. Guidelines, criteria, and rules of thumb

for evaluating normed and standardized assessment instru-
ments in psychology.Psychological Assessment, 6(4):284–
290, 1994.

[2] L. Constantine. “Usage-centered software engineering: new
models, methods, and metrics ”. InSoftware Engineering: Ed-
ucation and Practice, 1996. Proceedings. International Con-
ference, pages 2–9, Jan 1996. .

[3] A. Cooper, R. Reimann, and D. Cronin.About face 3: the
essentials of interaction design. John Wiley & Sons, 2007.

[4] G. Costagliola, A. Delucia, S. Orefice, and G. Polese. A
Classification Framework to Support the Design of Visual
Languages.Journal of Visual Languages & Computing, 13
(6):573–600, 2002. .

[5] G. Fischer. Domain-oriented design environments.Automated
Software Engineering, 1(2):177–203, 1994. .

[6] W. O. Galitz. The essential guide to user interface design: an
introduction to GUI design principles and techniques. John
Wiley & Sons, 2007.

[7] T. Green and M. Petre. Usability Analysis of Visual Program-
ming Environments: A Cognitive DimensionsÒăFramework.
Journal of Visual Languages & Computing, 7(2):131–174, jun
1996.

[8] A. Habermann and D. Notkin. Gandalf: Software develop-
ment environments.Software Engineering, IEEE Transac-
tions on, SE-12(12):1117–1127, Dec 1986. .

[9] K. A. Hallgren. Computing inter-rater reliability for observa-
tional data: An overview and tutorial.Tutorials in quantitative
methods for psychology, 8(1):23, 2012.

[10] D. D. Hils. Visual languages and computing survey: Data flow
visual programming languages.Journal of Visual Languages
& Computing, 3(1):69–101, 1992.

[11] S. Kelly and J.-P. Tolvanen.Domain-Specific Modeling: En-
abling Full Code Generation. John Wiley & Sons, 2008.

[12] D. Moody. The Physics of Notations: Toward a Scientific Ba-
sis for Constructing Visual Notations in Software Engineer-
ing. IEEE Transactions on Software Engineering, 35(6):756–
779, Nov 2009. .

[13] G. Murphy, M. Kersten, and L. Findlater. How are Java
software developers using the Eclipse IDE?Software, IEEE,
23(4):76–83, July 2006. .

[14] E. R. Tufte. The visual display of quantitative information.
Graphics press Cheshire, CT, 2 edition, may 2001.

[15] Z.-G. Wei, A. P. Macwan, and P. A. Wieringa. A Quantitative
Measure for Degree of Automation and Its Relation to System
Performance and Mental Load.Human Factors: The Journal
of the Human Factors and Ergonomics Society, 40(2):277–
295, 1998. .

	Introduction
	Methods
	Terminology
	IDE Selection
	Feature Definition
	IDE Evaluation

	Results
	Discussion
	Conclusion

