
A Survey of Features in Visual IDEs for 
Non-Programmers from a Usability and 

Suitability Point of View

Jonathan Orbeck1, Jean Michel Rouly2, Dr. Eugene Syriani3

1 University of Alabama, Tuscaloosa, Alabama, United States
2 George Mason University, Fairfax, Virginia, United States
3 Université de Montréal, Montréal, Quebec, Canada



Research Question

What aspects of a visual programming IDE affect

usability? Can these features be standardized?

{1}



Background

➤ Integrated Development Environments (IDEs)

➤ Visual languages

➤ Interface design

{2}



Background
IDEs

An Integrated Development Environment ...

➤ is generally domain specific

➤ supports development process

➤ integrates tools in uniform interface

A.N. Habermann and D. Notkin. Gandalf: Software development environments. Software Engineering, IEEE Transactions on, 
SE-12(12):1117{1127, Dec 1986. ISSN 0098-5589. doi: 10.1109/TSE.1986.6313007.

{3}



Background
Visual Languages

A visual language ...

➤ uses pictures to express computations

➤ consists of visual vocabulary, grammar, and 

semantics

➤ is more effective than text

D.L. Moody. The physics of notations: Toward a scientific basis for constructing visual notations in software engineering. 
Software Engineering, IEEE Transactions on, 35(6):756–779, Nov 2009. ISSN 0098-5589. doi: 10.1109/TSE.2009.67.
Eric J Golin and Steven P Reiss. The specication of visual language syntax. Journal of Visual Languages
& Computing, 1(2):141{157, 1990. {4}



Software Interfaces ...

➤ understand user desires and requirements

➤ plan for domain opportunities and constraints

➤ create useful, usable, and desirable products

Background
Interface Design

Alan Cooper, Robert Reimann, and David Cronin. About face 3: the essentials of interaction design. John Wiley & Sons, 2007.

{5}



1. Select visual IDEs

2. Define features
a. select common IDE features

b. formalize definitions

c. establish value ranges

3. Evaluate IDEs
a. measure IDEs for each feature

b. conduct user study for qualitative features

4. Prototype development framework

Research Proposal

{6}



Select Visual IDEs

{7}



Prototyping
Cameleon

Animation
Alice3

IDEs by Domain

3D Modeling
Blender

Grasshopper 3D

Modeling
AToMPM

MetaEdit+
UMLet
Violet

Visual Paradigm
Visual Use Case

Music
AudioMulch

Max

Simulation
MST

SimuLink
VisSim

Software
EMF

GNU Radio Companion
AppInventor
Piet Creator

Scratch
Stencyl
Tersus

TouchDevelop
WebRatio

Workflow
YAWL

{8}



Define Features

{9}



IDE Features

➤ Define novel set of features

➤ Categories
➤ Audience

➤ Chrome

➤ Human Interface

➤ Integration

➤ Language Syntax

{10}



IDE Features
Audience

➤ Domain
➤ field of knowledge

➤ eg. 3D modeling, animation, music, software, etc.

➤ Skill Level
➤ requisite entry-level skill

➤ eg. novice, intermediate, expert, general

{11}



IDE Features
Chrome

➤ General Operations
➤ most frequently used IDE features

➤ includes delete, save, paste, content assist, etc.

➤ Context Sensitive Tools
➤ tools that change given context

➤ Multiplicity of Perspectives
➤ number of available predefined tool configurations

G.C. Murphy, M. Kersten, and L. Findlater. How are java software developers using the Eclipse IDE? Software, IEEE, 23(4):76–
83, July 2006. ISSN 0740-7459. doi: 10.1109/MS.2006.105.c

{12}



IDE Features
Chrome

➤ Degree of Interface Visual Richness
➤ increase visual discriminability between tools

➤ eg. icons, shape, size, color, etc.

➤ Visual Clutter
➤ the number and organization of tools on the screen

➤ qualitative metric

D.L. Moody. The physics of notations: Toward a scientific basis for constructing visual notations in software engineering. 
Software Engineering, IEEE Transactions on, 35(6):756–779, Nov 2009. ISSN 0098-5589. doi: 10.1109/TSE.2009.67.

{13}



IDE Features
Chrome

➤ Object Properties Window
➤ display mode of object properties dialog or window

➤ Searchable Toolspace
➤ available tools can be reached through searching

➤ Toolbar Styles
➤ interface component idioms

➤ eg. sliders, toolbars, trees, icons, etc.

{14}



IDE Features
Human Interface

➤ Essential Efficiency
➤ amount of mental load to complete a standardized task

➤ Interface Efficiency
➤ amount of physical action to complete a standardized task

L.L. Constantine. “Usage-centered software engineering: new models, methods, and metrics ”. In Software Engineering: 
Education and Practice, 1996. Proceedings. International Conference, pages 2–9, Jan 1996. doi: 10.1109/SEEP.1996.533974.

{15}



IDE Features
Human Interface

➤ Keyboard Use
➤ level of interface support for keyboards

➤ Tertiary Interface Devices
➤ level of interface support for third-party devices

➤ Mode of Element Creation
➤ process to create elements in workspace

➤ eg. drag n drop, point n click

{16}



IDE Features
Integration

➤ Allowed Relations Indicated
➤ syntactically correct connections highlighted 

➤ Output Generation Style
➤ relationship between user-created model and final output

➤ Syntax Enforcement
➤ how the IDE enforces language syntax

➤ explicit vs implicit enforcement

{17}



IDE Features
Language Syntax

➤ Complexity Management
➤ characteristics to reduce language complexity

➤ Connection Style
➤ mode by which connections are created and displayed

➤ Degree of Language Visual Richness
➤ used to increase visual discriminability between elements

➤ eg. icons, shape, size, color, etc.

{18}



Evaluate IDEs

{19}



Data Collection

➤ Measure IDEs

➤ for each IDE, measure values of each variable

➤ some variables required in-depth analysis

➤ essential & interface efficiency

➤ visual clutter

{20}



Data Collection
Efficiency

➤ Create essential use cases
➤ 3 for each IDE

➤ increasing amount of complexity

➤ highest tier determined to be most representative

➤ Assess concrete use cases
➤ concretely execute each use case

➤ record steps & physical actions

{21}



Data Collection
Visual Clutter

➤ User study performed on Amazon.com Mechanical Turk
➤ workers rated screenshots for clutter

➤ 3 screenshots per IDE, varying complexity

➤ 5 unique workers per screenshot

➤ calculated averages for final values

➤ inter-rater reliability good, ICC=0.648

{22}



Data Collection
Visual Clutter

{23}



Prototype Development 
Framework

{24}



AToMPM

AToMPM is “a research framework from which you can 

generate domain-specific modeling web-based tools 

that run on the cloud”

{25}

E. Syriani, H. Vangheluwe, R. Mannadiar, C. Hansen, S. Van Mierlo and H. Ergin. AToMPM: A Web-based Modeling 
Environment. MODELS'13: Invited Talks, Demos, Posters, and ACM SRC. CEUR-WS.org: 1115, Miami, U.S.A., oct (2013).



➤ Contributions
➤ guided by results of IDE analysis

➤ intended to increase ease of use

➤ developed API Plugin

➤ extract common interface actions

➤ decrease required system familiarity for end user

API.openModelViewer  / Open model selection dialog

API.fireStatechart   / Broadcast a known event to Statecharts

API.drawElement      / Draw a custom canvas element

API.deleteElement    / Delete a canvas element by ID

API.drawEdge         / Construct an edge between two elements

API.dotConvert       / Convert a filepath to ArkM3 notation

AToMPM

{26}



Outcomes and
Future Work

{27}



Outcomes

➤ Set of formal interface feature definitions

➤ Evaluation technique for new IDEs

➤ Paper detailing results

➤ Foundation for AToMPM API

{28}



Future Work

➤ AToMPM
➤ generalize functions to AToMPM API

➤ incorporate visual variables

➤ complete user study of platform usability

➤ IDE Survey
➤ complete user studies of more variables

➤ perform statistical analysis & validation of results

➤ add more IDEs, develop more features of analysis

{29}



Questions

{30}



Appendices

{31}



IDEs Explored

{32}


